Analysis of Extinction Efficiency using Lorenz-Mie Theory

Parthkumar B. Dodiya
Research Scholar, Sardar Patel University, Vallabh Vidyanagar, Gujrat, India

Abstract

In the present study, we attempt to compute the extinction efficiency (Q_{e}) for particles having different refracting index The solution of electromagnetic scattering by a spheroidal particle of small size and refractive index have been carried out using Maxwell's equations under given boundary conditions. The Mie scattering coefficients a_{n} and b_{n} are determined by a system of equations obtained from the boundary conditions.. The paper discusses the relations of the extinction efficiency and the size parameter x. We give the relations of the approximate periodicity of the ripple structure and relative refractive indices m. The effects of absorption part of refracting index (m_{i}) and size of particle on extinction are illustrated by means of diagrams.

Keywords: The Lorenz-Mie Theory, Scattering of Light, Extinction Efficiency, Refracting Index, Absorption

I. INTRODUCTION

Particulate scattering is an useful concept in various branches of science. Since exact analytical solutions to the single-scattering problem have been worked out only for a few special shapes, the scattering particles are assumed to be spherical regardless of their real shape. Due to wide availability of computer programs for spherical shape, the spherical ${ }^{1}$ and infinite circular cylindrical ${ }^{2}$ solutions are by far the simplest. To perform Mie calculation so many methods have been discussed by many authors. After several decades of research, the Mie calculation has been perfectly developed. The important contributors are Mie ${ }^{1}$ Infeld 3, Dave ${ }^{4}$, Lentz ${ }^{5}$ and Wiscombe ${ }^{6}$ and this list is by no means complete. A good description of Mie theory is provided by Liou $\mathrm{K} . \mathrm{N}^{7}$ and the notation in his book is thus adopted. To compute parameters obtained by using Mie Theory programming language FORTRAN has been used. This code provides accurate results for small and large particles with size parameters.

In this paper, the mathematic characteristics of the important parameter of extinction efficiency are analysed and calculated. The corresponding relationship of the ripple structure of extinction curve and the size parameter (x) and the corresponding relationship of the peak value ripple structure are discussed. Moreover, the corresponding relationship of the approximate period of the ripple structure of extinction curve and the relative refractive index (m) is studied.

II. THEORETICAL BACKGROUND

When radiation is incident on particle, two different processes can occur. First, the particle can re-radiate the energy without changing the wavelength which is known as scattering. Second, the received energy can be re-emitted at a different wavelength or transformed into heat energy which is known as absorption. The sum of these two processes is called extinction ${ }^{8}$. There are two type of scattering, elastic scattering and inelastic scattering. In the elastic scattering the wavelength of the scattered radiation is same as the wavelength of incident radiation. In
inelastic scattering, the wavelength of scattered radiation is different from the incident radiation. The elastic scattering can be classified into Rayleigh scattering, and Mie scattering depending on the size of the particle as compared to wavelength of incident radiation. When the particle size is much smaller than the incident wavelength, the scattering is called Rayleigh scattering. When the particle size is same as the incident wavelength, the scattering is called Mie scattering ${ }^{7}$. This scattering produce pattern like an antenna lobe with sharper and more intense forward lobe for larger particles which is shown in below figure.

Figure 1. Types of scattering

Lorenz-Mie theory, also called Mie theory was independently developed and named for Gustav Mie (1868 - 1957) and Ludvig Lorenz (1829 - 1891). It provides a complete mathematical theory for scattering by small particles ${ }^{9}$. Smallness of particles are define by size parameter: $x=\frac{2 \pi}{\lambda} a$; where a is radius of the particle and λ is incident wavelength. This theory is applicable for size parameter having range between 0.1 to 100 ; commonly known as Mie region. Mie theory is based on three assumptions ${ }^{10}$, The particle is sphere in shape, The scattered field from the particle is very large. Particle is homogeneous so it is characterized by single refractive index. In this theory, the effect of particle geometry, particle index with respect to surrounding medium and angular dependence of incident beam can be studied ${ }^{9}$. Thus, Lorenz Mie scattering theory can be constructed starting with basic electrodynamics equations. In any scattering phenomena, a scatterer first absorbs incident energy and re-radiate in different directions. In this scenario, scattered radiation is considered due to multipole-expansion
radiation from the scatterer. With this understanding a scatterer is assumed to be made up of monopole, dipole, etc. The largest contribution comes from a monopole, and then decreases with higher order pole distributions. Thus total scattering phenomenon, i.e. to calculate total scattered intensity, we can sum such all contributions. To achieve this end, we require an electromagnetic wave equation to be solved.

Now, we discuss the scattering of plane wave by a homogeneous sphere. For that, we shall assume that outside the medium is vacuum ($m=1$), that the material of the sphere has index of refraction m, and the incident radiation is linearly polarized. We select the origin of a rectangular system of coordinates at the centre of the sphere, with the positive Z axis along the direction of propagation of the incident wave. If the amplitude of the incident wave is normalized to unity, the incident electric and magnetic field vectors are given by,

$$
\begin{equation*}
\mathrm{E}^{i}=\mathbf{a}_{x} e^{-i k z}, \quad \mathrm{H}^{i}=\mathbf{a}_{y} e^{-i k z}, \tag{1}
\end{equation*}
$$

for incident waves outside the sphere, we have
$=\frac{1}{k} \sum_{n=1}^{\infty}(-i)^{n} \frac{(2 n+1)}{n(n+1)} \psi_{n}(k r) P_{n}^{1}(\cos \theta) \cos \phi$,
$=\frac{1}{k} \sum_{n=1}^{\infty}(-i)^{n} \frac{(2 n+1)}{n(n+1)} \psi_{n}(k r) P_{n}^{1}(\cos \theta) \sin \phi$.
for scattered waves we have
$r u^{s}=\frac{1}{k} \sum_{n=1}^{\infty}(-i)^{n} \frac{(2 n+1)}{n(n+1)} a_{n} \xi_{n}(k r) P_{n}^{1}(\cos \theta) \cos \phi$, $r v^{s}$
$=\frac{1}{k} \sum_{n=1}^{\infty}(-i)^{n} \frac{(2 n+1)}{n(n+1)} b_{n} \xi_{n}(k r) P_{n}^{1}(\cos \theta) \sin \phi$,

The coefficients a_{n}, b_{n} have to be determined from the boundary conditions at the surface of the sphere. The conditions are that the tangential components of E and H be continuous across the sphere surface $r=a$,
$E_{\theta}^{i}+E_{\theta}^{s}=E_{\theta}^{t}, H_{\theta}^{i}+H_{\theta}^{s}=H_{\theta}^{t} E_{\phi}^{i}+E_{\phi}^{s}$

$$
\begin{equation*}
=E_{\phi}^{t}, H_{\phi}^{i}+H_{\phi}^{s}=H_{\phi}^{t} . \tag{5}
\end{equation*}
$$

By Applying boundary condition ${ }^{11}$ and matching the transverse field at sphere leads to the following expressions of the Mie coefficients.

$$
\begin{align*}
& a_{n} \\
= & \frac{\psi_{n}^{\prime}(y) \psi_{n}(x)-m \psi_{n}(y) \psi_{n}^{\prime}(x)}{\psi_{n}^{\prime}(y) \xi_{n}(x)-m \psi_{n}(y) \xi_{n}^{\prime}(x)} \tag{6}\\
b_{n}= & \frac{m \psi_{n}^{\prime}(y) \psi_{n}(x)-\psi_{n}(y) \psi_{n}^{\prime}(x)}{m \psi_{n}^{\prime}(y) \xi_{n}(x)-\psi_{n}(y) \xi_{n}^{\prime}(x)} \tag{7}
\end{align*}
$$

Above Eqs. (6) and (7) are known as scattering Mie coefficients.
where, $m=m_{r}-i m_{i}$ is index of refraction, with m_{r} and m_{i} representing the real and imaginary parts of refractive index, respectively.Here $y=m x$ and $\psi_{n}(x)$ are the Spherical Bessel functions ${ }^{7}$ of order n.

$$
\begin{align*}
& \psi_{n}(x) \\
& =\sqrt{\frac{\pi}{2 x}} \sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k!\Gamma\left(n+\frac{1}{2}+k+1\right)}\left(\frac{x}{2}\right)^{2 k+n+\frac{1}{2}} \tag{8}
\end{align*}
$$

The function $\xi_{n}(x)$ is the half-integral-order Hankel function of the second kind,

$$
\begin{equation*}
\xi_{n}(x)=\psi_{n}(x)-i \chi_{n}(x) \tag{9}
\end{equation*}
$$

The is Spherical Neumann function χ_{n} is given by,

$$
\begin{align*}
& \chi_{n}(x) \\
& =\sqrt{\frac{\pi}{2 x}} \sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k!\Gamma\left(-n-\frac{1}{2}+k+1\right)}\left(\frac{x}{2}\right)^{2 k-n-\frac{1}{2}}
\end{align*}
$$

By using scattering Mie coefficient we may now define the extinction efficiency. When the mass extinction cross section is multiplied by the density $\left(\mathrm{gcm}^{-3}\right)$, the quantity is referred to as extinction efficiency.
$Q_{e}=\frac{\sigma_{e}}{\pi r^{2}}=\frac{2}{x^{2}} \sum_{n=1}^{\infty}(2 n+1) \operatorname{Re}\left(a_{n}\right.$

$$
\begin{equation*}
\left.+b_{n}\right) \tag{8}
\end{equation*}
$$

Where, x is given by, $x=\frac{2 \pi}{\lambda} a, a$ is radius of particle and λ is the wavelength of incident radiation ${ }^{7}$.

III. RESULTS

The preceding formation is now used to compute scattering extinction efficiency within the LorenzMie theory. In this calculation Wavelength $\lambda=560 \mathrm{~nm}$ of incoming wave and Radius (a) of particle vary between 0.9 to $4.5 \mu \mathrm{~m}$. Through, the solution of a in the present study is arbitrary and represent only a test-case. Further, we have tested and analyzed the result for two refractive indices; Only with real part $\left(m_{r}\right)$, Including imaginary refractive index $\left(m_{i}\right)$. FORTRAN-90 code is constructed to program calculations.

3.1 Extinction efficiency $\boldsymbol{Q}_{\boldsymbol{e}}$ for different real refractive index $\left(m_{r}\right)$:

Figure 2. Extinction efficiency $\left(\boldsymbol{Q}_{\boldsymbol{e}}\right)$ four different real refractive index as a function of size parameter.

Figure 2 shows extinction efficiency for particle. For $x<2, Q_{e}$ is critically dependent on x. The position of first maximum and the frequency of oscillation are dependent on the index of refraction, increasing value of m corresponding to smaller value of x at maximum. The smoothness of curve decrease i.e ripple structure arise as refractive index increase. The extinction is due to a combination of blocking of the wave by the particle and interference between incident and scattered waves. Some of the energy beyond the dimensions of the particle is scattered also. According to Babinet's principle, if the particle is very large compared to wavelength, an amount of energy proportional to geometry of cross section is abstracted from beam by scattering and absorption, but a like amount is diffracted out of beam ${ }^{12}$.

In the graph of Q_{e} there are series of maxima, minima and ripples. The ripple structure is caused by scattering resonance of individual partial waves in the multiple expansion of scattered field. The ripple structure become faint as x is large. When the relative indices m is real and it is less than 2, the ripple structure has single periodicity and the position of the peak value of ripple structure is corresponding to those of $\operatorname{Re}\left(a_{n}\right)$ and $\operatorname{Re}\left(b_{n}\right)^{13}$.

The major maxima and minima are due to interference. The interference structure has been interpreted as being caused by the interference either of the forward-scattering light and the incident beam or the diffracted and transmitted light wave in near forward direction ${ }^{14}$.

3.2 Extinction efficiency ($\boldsymbol{Q}_{\boldsymbol{e}}$) for different refractive index $\left(m_{=}=m_{r}+i m_{i}\right)$:

Figure: 2 Extinction efficiency $\left(\boldsymbol{Q}_{\boldsymbol{e}}\right)$ for different refractive index as a function of size parameter.

The extinction efficiency decrease as the imaginary part of refractive index increase. When the imaginary part is added in refractive index, true absorption occurs and due to that the dependency of Q_{e} on particle size is modified. As m_{i} increase from zero, the principle maximum of curve is decreases in magnitude and shift towards the smaller value of x. The amplitude of the secondary oscillations are correspondingly reduced. When the imaginary part is greater than 0.1 the oscillation completely damped out. So as the imaginary part increases the absorption efficiency increases ${ }^{13}$.

When the imaginary part of m becomes large, $\operatorname{Re}\left(a_{n}\right)$ and $\operatorname{Re}\left(b_{n}\right)$ become small and the interference oscillation amplitudes decrease. The phenomena indicated that the absorption of the sphere becomes strong and the interference become weak when the imaginary part of m become large ${ }^{14}$.

IV. CONCLUSION

In Q_{e}, when the imaginary part is zero, the particle behaves as a perfect reflector, there is no absorption. The position of first maximum and the frequency of oscillations are dependent on the index of refraction. When the imaginary part is added in refractive index, the principle maximum of curve is decrease in magnitude and shift towards the smaller value of x. During the course of calculation, we have found that when imaginary part is greater than 0.1 the oscillation completely damped out. The ripple structure in Q_{e} is caused by resonance of individual partial waves in the multipole expansion of scattered field. The ripple structure reduces as x increases ${ }^{13}$. It is known that the major maxima and minima are due to interference either of forward scattering light and incident beam or the diffracted and transmitted light wave near forward direction ${ }^{14}$.

V. REFERENCES

[1]. Mie G., "Beitrage zur Optik trdber Medien speziell kolloidalerMetallosungen," Ann. Phys. 25 (1908) 377.
[2]. Wait J. R., "Scattering of a Plane Wave from a Circular Dielectric Cylinder at Oblique Incidence," Can. J. Phys. 33 (1955) 189.
[3]. Infeld L., "The influence of the width of the gap upon the theory of antennas," Q. Appl. Math. 5 (1947) 113- 132.
[4]. Dave J. V., "Scattering of electromagnetic radiation by a large, absorbing sphere," IBM J. Res. Dev. 13 (1969) 302-313.
[5]. Lentz W. J, "Generating Bessel functions in Mie scattering calculations using continued fractions," Appl. Opt. 15 (1976) 668-671.
[6]. Wiscombe W. J., "Improved Mie scattering algorithms," Appl. Opt. 19 (1980) 1505-1509.
[7]. Liou K. N, An Introduction to Atmospheric Radiation, Academic Press (2009).
[8]. E. Boesche, Influence of aerosols on polarization of skylight in gaseous absorption bands, Scientific report/ WR-2008-04.
[9]. Valeria Garbin, Giovanni Volpe, Enrico Ferrari, Michel Versluis, Dan Cojoc and Dmitri Petrov, New J. Phys., 11 (2009) 013046.
[10]. W. A. de Rooij and C. C. A. H. Van der Stap, Astr. and Astrophys., 131 (1984) 237-248.
[11]. Griffiths D. J, Introduction to Electrodynamic, Pearson Addison-Wisley, 2012
[12]. Coulson K. L, POLARIZATION AND INTENSITY OF LIGHT IN THE ATMOSPHERE, A. DEEPAK Publishing (1988).
[13]. Chylek Petr, J. Opt. Soc. Am, 66 (1976) 285-287.
[14]. Lock J. A and Leiming Yang, J. OPT. Soc. Am. A, 8 (1991) 1132-1134.

Cite this Article

Parthkumar B. Dodiya, "Analysis of Extinction Efficiency using Lorenz-Mie Theory", International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Online ISSN : 2394-4099, Print ISSN : 2395-1990, Volume 3 Issue 8, pp. 12521256, November-December 2017.
Journal URL : http://ijisrset.com/IJSRSET196456

